Document Type: Original Article

Authors

1 Ankara University, Faculty of Agriculture, Department of Plant Protection, 06110 Ankara, Turkey

2 Ankara University, Faculty of Engineering, Department of Food Engineering, 06100 Ankara, Turkey.

Abstract

The soluble carbohydrates play a major role in germination, growth, reproduction, defense and survival of perennial plant species reproducing with rhizomes under normal and adverse environmental conditions. The information regarding the amount of carbohydrates present in the rhizomes of such species could provide valuable insights for making decisions regarding the best time to control these species. Therefore, seasonal changes in the concentrations of soluble carbohydrates (fructose, glucose, sucrose) and their sum termed as total amount of soluble carbohydrates (TSCs) in the rhizomes of Russian knapweed were investigated during 2013-2014. The TSCs were low at sprouting and then slightly increased until mid-June (beginning of flowering). Thereafter, TSCs were slightly decreased from mid-June to minimal values in August (flowering period) (6.2 mg/g), and then gradually increased until the highest values in January (170.6 mg/g). Fructose (131.5 mg/g) was detected as the main soluble carbohydrate, followed by sucrose (98.8 mg/g) and glucose (73.1 mg/g). Keeping in view the results of current study, the best time to control Russian knapweed is flowering, where the amount of TSCs in the rhizomes is minimal. It is therefore recommended that the species should be controlled either at flowering stage or during the production of first rhizomes for its sustainable management in the country.

Keywords

Amy A.C. 1932. Variations in the organic reserves in underground parts of five perennial weeds from late April to November. St. Paul: MN: Minn. Agric. Exp. Stn. Tech. Bull. 84: 9-21.

Archibald O.W. 1995. Ecology of World Vegetation. Chapman and Hall, London.

Asaeda T, Hai D.N, Manatunge J, Williams D, Roberts J. 2005. Latitudinal characteristics of below- and above-ground biomass of Typha: a modelling approach. Ann. Bot. 96: 299-312.

Asaeda T, Manatunge J, Roberts J, Hai D.N. 2006. Seasonal dynamics of resource translocation between the aboveground organs and age-specific rhizome seg-ments of Phragmites australis. Environ. Exp. Bot. 57: 9-18.

Asaeda T, Sharma P, Rajapakse L. 2008. Seasonal patterns of carbohydrate translocation and synthesis of structural carbon components in Typha angustifolia. Hydrobiologia. 607: 87-101.

Becker R.L, Fawcett R.S. 1998. Seasonal carbohydrate fluctuations in hemp dodbane (Apocynum cannabinum) crown roots. Weed Sci. 46: 358-365.

Brandle R, Crawford R.M.M. 1987. Rhizome anoxia tolerance and habitat specialisation in wetland plants. In: Crawford, R.M.M. (ed.), Plant life in aquatic and amphibious habitats, pp. 397-410. Oxford, UK, Blackwell.

Choi B, Han B, Robles M, Kim R. 2000. Studies on neurotoxic effects of repin, a principal sesquiterpene lactone of A. repens that causes equine nigrostriatal encephalomalacia. Brain Pathol. 10: 785-786.

Clevering O.A, Brix H, Lukavska J. 2001. Geographic variation in growth responses in Phragmites australis. Aquat. Bot. 69: 89-108.

Čižková-Končalová H, Květ J, Thompson K. 1992. Carbon starvation: a key to reed decline in eutrophic lakes. Aquat Bot. 43: 105-13.

Daer T, Willard E.E. 1981. Total nonstructural carbohydrate trends in bluebunch wheatgrass related to growth and phenology. J. Range Manage. 34: 377-379.

Dickerman J.A, Wetzel R.G. 1985. Clonal growth in Typha latifolia: population dynamics and demography of the ramets. J. Ecol. 73: 535-552.

Ernst M, Chatterton N.J, Harrison P.A. 1996. Purification and characterization of a new fructan series from species of Asteraceae. New Phtol. 132: 63-66.

Fletcher R.A, Renney A.J. 1963. A growth inhibitor found in Centaurea spp. Can J Plant Sci. 43: 475-481.

Follet J.M, Proctor J.T.A, Walton E.F, Boldingh H.L, McNamara C, Douglas J.A. 2004. Carbohydrate and gingsenoside changes in ginseng roots grown in Bay of Plenty, New Zealand. Journal of Ginseng Research. 28: 165-172.

Frear D.S. 1995. Induced frost tolerance in leafy spurge roots: changes in carbohydrate metabolism. Leafy Spurge News 17:5.

Geiger D.R. 1987. Understanding interactions of source and sink regions of plants. Plant Physiol Biochem. 25: 659-666.

Grace J.B, Wetzel R.G. 1981. Phenotypic and genotypic components of growth and reproduction in Typha latifolia: experimental studies in marshes of differing successional maturity. Ecology. 62: 789-801.

Granéli W, Weisner S.E.B, Sytsma M.D. 1992. Rhizome dynamics and resource storage in Phragmites australis.Wetlands Ecol. Manage. 1: 239-247.

Green D.G. 1983. Soluble sugar changes occurring during cold hardening of spring wheat, fall rye and alfalfa. Can. J. Plant Sci. 63: 415-420.

Hendry G.A. 1987. The ecological significance of fructan in a contemporary flora. New Phytol. 106: 201-216.

Hendry G.A.F. 1993. Evolutionary origins and natural functions of fructans: a climatological biogeographic and mechanistic appraisal. New Phytol. 123: 3-14.

Ho L.C. 1988. Metabolism and compartmentation of imported sugar sink organs in relation to sink streigth. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39: 355-378

Hodgson J.M. 1968. The nature, ecology, and control of Canada thistle. U.S. Department of Agriculture, Tech. Bull. 1386. Washington, DC: USDA. 32 p.

Jung G.A, Smith D. 1961. Trends of cold resistance & chemical changes over winter in the roots & crowns of alfalfa & medium red clover. I. Changes in certain nitrogen & carbohydrate fractions. Agron. J. 53: 359-364.

Karunaratne S, Asaeda T, Yutani K. 2004. Age-specific seasonal storage Dynamics of Phragmites australis rhizomes: a preliminary study. Wetlands Ecol. Manage. 12: 343-351.

King J.R, Conway W.C, Rosen D.J, Oswald B.P, Williams H.M. 2014. Total Nonstructural Carbohydrate Trends in Deeproot Sedge (Cyperus entrerianus). Weed Sci. 62: 186-192.

Kleijn D, Treirer U.A, Müller-Scharer H. 2005. The importance of nitrogen and carbohydrate storage for plant growth of the alpine herb Veratrum album. New Phytol. 166: 565-575.

Kohl J.G, Woitke P, Kuhl H, Dewender M, Konig G. 1998. Seasonal changes in dissolved amino acids and sugars in basal culm internodes as physiological indicators of the C/N-balance of Phragmites australis at littoral sites of different trophic status. Aquat. Bot. 60: 221-240.

Koppitz H. 2004. Effects of flooding on the amino acid and carbohydrate patterns of Phragmites australis. Limnologica. 34: 37-47.

Kubin P, Melzer A. 1996. Does ammonium affect accumulation of starch in rhizomes of Phragmites australis (Cav.) Trin. ex Stued?. Folia Geobot. Phytotax. 31: 99-109.

Leoš K, Jitka K, Hana C. 1999. Carbohydrate storage in rhizomes of Phragmites australis: the effects of altitude and rhizome age. Aqua Bot. 64: 105-110.

Lym R.G, Messersmith C.G. 1987. Carbohydrates in leafy spurge roots as influenced by environment. J. Range Manage. 40: 139-144.

Livingston D.P., Henson C.A. 1998. Apoplastic sugars, fructans, fructan exohydrolase, and invertase in winter oat: responses to second-phase cold hardening, Plant Physiol. 116: 403-408.

Maddox D.M, Mayfield A, Poritz N.H. 1985. Distribution of yellow starthistle (Centaurea solstitialis) and Russian knapweed (Centaurea repens). Weed Sci. 33: 315-327.

Madsen JD. 1997. Seasonal biomass and carbohydrate allocation in southern populations of Eurasian watermilfoil. J. Aquat. Plant Manage. 35: 15-21.

Mallabaev A, Saitbaeva I.M, Sidyakin G.P. 1982. Components of Acroptilon repens. Khim. Prir. Soedin. 1, 123.

Mangold J.M, Poulsen C.L, Carpinelli M.F. 2006. Revegetating Russian Knapweed (Acroptilon repens) Infestations Using Morphologically Diverse Species and Seedbed Preparation. Rangeland Ecol Manage. 60: 378-385.

McAllister R.S, Haderlie L.C. 1985. Seasonal variations in Canada thistle (Cirsium arvense) root bud growth and root carbohydrate reserves. Weed Sci. 33: 44-49.

McNaughton S.J. 1974. Development control of net productivity in Typha latifolia ecotypes. Ecology. 55: 864-869.

Mirjam K.R, Würth K.W, Susanna P.S.J, Wright C.K. 2005. Non-structural carbohydrate pools in a tropical forest. Oecologia. 143: 11-24.

Mordovets A.A, Chernyshev I.D, Ignatenko V.P. 1972. The reaction of Russian knapweed plants to root cutting at different depths. Sel'skokhozyaistvennaya Biologiya. 7: 299-300.

Mullin B.H, Anderson L.W.J, DiTomaso J.M, Eplee R.E, Getsinger D. 2000. Invasive plant species. Coun Agric Sci Technol. 13: 1-18.

Musiyaka V.K, Gvozdyak I.N, Kalinin F.L, Melnichuk Y.P, Kamenchuk O.P, Petasyuk N.V, Zheltonozhskaya L.V. 1993. Plant growth inhibitors in extracts from roots and callus tissues of (Acroptilon picris (Pall.) C. A. M.). Fiziologiya i Biokhimiya Kul’turnykh Rastenii. 25: 368-375.

Özer Z. 1969. Untersuchungen zur Biologie und Bekampfung der AckerKratzdistel (Cirsium arvense (L.) Scop.). Diss. Hohenheim.

Özer Z, Koch W. 1977. Gehalt von Wurzeln der Ackerkratz-distel (Cirsium arvanse) an Inulin und Zucker in Abhangigkeit von mechanischer und chemischer Bekampfung. Z. Pflanzen. Pflanzenschutz. 7:169-170.

Özer Z, Kadıoğlu İ, Önen H, Tursun N. 1999. Türkiye’nin Bazı Önemli Yabancı Otları (Tanımları ve Kimyasal Savaşımları). Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Yayınları No:38, Tokat.

Pohl W, Grosser S, Melzer A., 1999. Stickstoff- und Kohlenhydratspeicherung in Rhizomen von Phragmites australis (CAV.) TRIN. ex STEUDEL an unter-schiedlichen aquatischen Standorten oberbayerischer Seen. Limnologica. 29: 36-46.

Pollock C.J, Cairns A.J. 1991. Fructan metabolism in grasses and cereals. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 77–101.

Quintana N, Weir T.L, Du J, Broeckling C.D, Rieder J.P, Stermitz F.R, Paschke M.W, Vivanco J.M. 2008. Phytotoxic polyacetylenes from roots of Russian knapweed (Acroptilon repens (L.) DC.). Phytochemistry. 69: 2572-2578.

Rice P.M. 2006. Invaders Database System. Available at: http://invader.dbs.umt.edu. Accessed 30 March 2006.

Risser P.G, Cottam G. 1968. Carbohydrate cycles in the bulbs of some spring ephemerals. Bull Torrey Bota Club. 95: 359-369.

Robles M, Choi B.H, Han B, Santa-Cruz K, Kim R.C. 1998. Repin-induced neurotoxicity in rodents. Exp. Neurol. 152: 129-136.

Robocker W.C, Schirman R, Zamora B.A. 1972. Carbohydrate Reserves in Roots of Dalmatian Toadflax. Weed Sci. 20: 212-214.

Rutherford P.P. 1977. Carbohydrate changes in stored vegetables with special reference to red beet and parsnip. Annal Appl Biol. 85: 440-444.

Song X, Peng C, Zhou G, Gu H, Li Q, Zhang C. 2016. Dynamic allocation and transfer of non-structural carbohydrates, a possible mechanism for the explosive growth of Moso bamboo (Phyllostachys heterocycla). Scientific Reports. 6: 25908.

Sowokinos J.R. 2001. Biochemical and molecular control of cold-induced sweetening in potatoes. Amer J Potato Res. 78: 221-236.

Sözeri S, Erdiller G. 1993. Ankara ve Çevresinde Sorun Olan Knapweed (Acroptilon repens) Köklerindeki Karbonhidrat Miktarında Bir Vejetasyon Devresinde Meydana Gelen Değişimler. Türkiye I. Herboloji Kongresi, 3-5 Şubat: 49-53.

Stevens K.L, Merrill G.B. 1985. Sesquiterpene lactones and allelochemicals from Centaurea species. In: Thompson, A.C. (Ed.), The Chemistry of Allelopathy: Biochemical Interactions among Plants, ACS Symposium Series 268. American Chemical Society, Washington, DC, pp. 83–98.

Stevens K.L. 1986. Allelopathic polyacetylenes from Centaurea repens (Russian knapweed). Journal of Chemical Ecology. 12: 1205-1211.

Stitt M, Hurry V. 2002. A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr. Opin. Plant Biol. 5: 199-206.

Tissue D.T, Wright S.J. 1995. Effect of seasonal water availability on phenology and the annual shoot carbohydrate cycle of tropical forest shrubs. Function Ecol. 9: 518-527.

Tursun N, Seyithanoglu M, Uygur F.N, Elibuyuk İ.O, Elibuyuk E.A. 2011. Seasonal dynamics of soluable carbonhidrates in rhizomes of Phragmites australis and Typha latifolia. Flora. 206: 731-735.

Tworkoski T. 1992. Developmental and Environmental Effects on Assimilate Partitioning in Canada Thistle (Cirsium arvense). Weed Science Society of America. 40: 79-85.

Van den Ende W, Van Laere A. 1996a. Fructan synthesizing and degrading activities in chicory roots (Cichorium intybus L.) during field-growth, storage and forcing. J. Plant Physiol. 149: 43-50.

Van den Ende W, Van Laere A. 1996b. Variation in the in vitro generated fructan pattern from sucrose as a function of the purified chicory root 1- SST and 1-FFT concentrations. J. Exp. Bot. 47: 1797-1803.

Vijn I, Smeekens S. 1999. Fructan: more than a reserve carbohydrate? Plant Physiol. 122: 351-360.

Walton E.F, McLaren G.F, Boldingh H.L. 2007. Seasonal patterns of starch and sugar accumulation in herbaceous peony (Paeonia lactiflora Pall.). J Hortic Sci Biotechnol. 82: 365-370.

Watson A.K. 1980. The biology of Canadian weeds. 43. Acroptilon (Centaurea) repens (L.) DC. Can J Plant Sci. 60: 993-1004.

Willeke L, Hansjorg K, Roland G, Wilhelm C. 2012. Seasonal variation of the sprouting ability of rhizome/root buds and concentrations of storage compounds in Calystegia sepium (L.) R. Br. and Convolvulus arvensis L. 25. Deutsche Arbeitsbesprechung uber Fragen der Unkrautbiologie und –bekampfung, 13.-15. Marz 2012, Braunschweig.

Wismer W.W, Marangori A.G, Yada R.Y. 1995. Lowtemperature sweetening in roots and tubers. Horticul Rev. 17: 203-231.

Xin Z, Browse J. 2000. Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ. 23: 893-902.

Xu D.H, Bai J, Li J.H, Fang X.W, Wang G. 2008. Changes of Photosynthetic Activity and Carbohydrate Content in Resurrection Plant Caragana korshinskii during Dehydration and Rehydration. Plant Stress, Global Science Books.

Zimmerman J.A.C. 1996. Ecology and distribution of Acroptilon repens (L.) DC., Asteraceae. USGS Biological Resources Division, Colorado Plateau Field Station-Flagstaff, Arizona.