ISC, Google Scholar, CAB Abstracts

Document Type : Original Article


Crop Protection Department, Faculty of Agricultural Sciences, University of Gezira, Sudan.



Striga hermonthica (Del.) Benth., Orobanchaceae, is an obligate root parasite on important cereal crops. The aim of this study is to investigate variability and host specificity in the early developmental stages of S. hermonthica parasitism in response to in-situ root exudates of sorghum. Field surveys were conducted during the seasons 2013/14 in Striga endemic areas in Sudan to collect seeds from the parasite. Fifteen S. hermonthica populations were collected. An in vivo experiment was conducted at the University of Gezira, Sudan to study the effects of in-situ root exudates of three sorghum cultivars on percentage of seed germination, haustorium initiation, attachment and penetration. Treatments were arranged in a factorial completely randomized design with three replicates. Data were subjected to the analysis of variance (P £ 0.5). The results revealed the highest percentage of seed germination (46.9-57.5 %), haustorium initiation (73.8-77.9 %), attachment (38.4–40 %) and penetration (20.7–23.7 %) into sorghum root was induced by in-situ root exudates of sorghum cv. Abu-70 and by sorghum cv. Wad Ahmed. While, the lowest percentage of seed germination (53.5 %), haustorium initiation (45.2 %), attachment (5.8 %) and penetration (1.5 %) into sorghum root was induced by in-situ root exudates of Hakika. The results also revealed that percentage of seed germination, haustorium initiation, attachment and penetration of S. hermonthica populations collected from infected sorghum in response to sorghum in-situ root exudates was the highest. While, the percentage of seed germination, haustorium initiation, attachment and penetration of S. hermonthica populations collected from infected millet in response to sorghum in-situ root exudates was the lowest. This study confirms the existence of two levels of physiological specialization in S. hermonthica populations in Sudan. Moreover, two strains of S. hermonthica are one specific to sorghum and the other to millet. 


Ali R.A.M.A, El-Hussein A.A, Mohamed K.I, Babiker A.G.T. 2009. Specificity and Genetic Relatedness among Striga hermonthica Strains in Sudan. Life Sci. Int. J. 3(3): 1159-1166.
Ali R. 2008. Host specificity, physiological and genetic variability within S. hermonthica population collected from under sorghum, millet and maize. M Sc thesis, University of Khartoum, Sudan. Pp 67.
AstattP.R, Hansen I.M. 1978. Correlation between haustoria formation and parasitic development in Orthocarpus purpurascens (Scrophulariaceae), Annals Bot. 42: 1271-1276.
Atera E, Itoh K. 2011. Evaluation of ecologies and severity of Striga weed on rice in sub-Saharan Africa. Agric. Biol. J. N. Am. 2: 752-760.
Babiker A.G.T. 2007. Striga: The Spreading Scourge in Africa. Regulation Plant Growth Develop. 42: 74-87.    
Bouwmeetster H, Matusova R, Zhongkui S, Beale M. 2003. Secondary metabolic signaling in host- parasitic plant interactions. Current Opinion Plant Biol. 6: 358-364.
Christopher J.B, Jennifer G.K, Berner D.K, Michael P.T. 2002. Genetic variability of Striga asiatica (L.) Kuntz based on AFLP analysis and host parasitic interaction. Euphytica. 128: 375-388.
Dafaallah A.B. 2006. Effects of 2,4-D and Nitrogen on Striga (S. heromonthia (Del.) Benth.). Incidence, Grain Sorghum Growth and Parasitism. M Sc dissertation, University of Gezira, Sudan.
Dafaallah A.B, Babiker A.G.T, Hamad Elneel. A.H. 2019. Variability and Host Specificity of Striga hermonthica in Response to in situ Root Exudates of Pennisetum glaucum. Tunisian J Plant Prot. 14(1): 83-92.
Dafaallah A.B, Babiker A.G.T, Hamdoun A.M. 2014. Effects of 2,4-D, DMBQ and sorghum root extract on haustorium induction and attachment of witchweed [Striga hermonthica (Del.) Benth.] to roots of Sorghum bicolor (L.) Moench. Gezira J Agric Sci. 12(2): 1-13.
Dafaallah A.B, Babiker A.G.T, Hamdoun A.M, Mohamed E.Y. 2017. Influence of DMBQ, sorghum root extracts and temperature on haustorium initiation of Striga hermonthica (Del.) Benth. Neelain J Sci Technol. 1(1): 8-14.
Dawud M.A.  2017. Striga Resistance in Cereal Crops: Recent Progress and Future Prospects. A Review. Global J Sci Front Res. 17(3): 1.
Elbasher O.A. 2016. Vermination of climate changes using rainfall and temperature as indicators and its impacts on agricultural production in the arid zone of Sudan (1981-210). Ph.D. Thesis, University of Gezira, Sudan, 150 pp.
Garba Y, Musa A, Alhassan J. 2017. Management of giant witch weed (Striga hermonthica)infestation in integrated maize field at Southern Guinea Savannah, Nigeria. Scholarly J Agric Sci. 7(4): 89-94.
Gethi G.J, Smith M.E, Mitchell S.E, Resovich S.K. 2005. Genetic diversity of Striga hermonthica and Striga asiatica populations in Kenya. Weed Res.45: 64-73.
Gwary D.M, Rabo T.D, Gwary S.D. 2001. Effects of Striga hermonthica and anthracnose on the growth and yield of sorghum in Sudan, savanna of Nigeria. Nigerian J Weed Sci. 14: 47-51.
Jamil M, Rodenburg J, Tatsiana Charnikhova T, Bouwmeester H.H. 2011. Pre attachment Striga hermonthica resistance of New Rice for Africa (NERICA) cultivars based on low strigolactone production. New Phytologist. 192: 964-975.
King S.B, Zummo N. 1977. Physiologic specialization in Striga hermonthica in West Africa. Plant Disease Reporter. 61: 770-773.
Kountche B.A, Hash C.T, Dodo H, Laoualy O, Sanogo M.D, Timbeli A, Vigouroux Y, This D, Nijkamp R, Haussmann B.I.G, 2013. Development of a pearl millet Striga-resistant genepool: response to five cycles of recurrent selection under Striga-infested field conditions in West Africa. Field Crop Res. 154: 82-90.
Koyama M.L. 2000. Molecular markers for the study of pathogen variability: Implication for breeding resistance to Striga hermonthica. In: Haussmann, B. I. G., Hess, D. E., Koyama, M. L. and Geiger, H. F. W (eds.) Breeding for Striga Resistance in Cereals. Proceedings of a Workshop held at IITA, Ibadan, Nigeria pp. 227-245.
Lewin C. 1932. Witchweed (Striga lutea var. bicolor (O. Kuntze) N. Rhod. Agriculture and Development. Bulletin, pp 2-51.
Mbuvi D.A, Masiga C.W, Kuria E, Masanga J, Wamalwa M, Mohamed A, Odeny D.A, Hamza N, Timko M.P, Runo S. 2017. NovelSources of Witchweed (Striga) Resistance from Wild SorghumAccessions. Front. Plant Sci. 8:116.
Mohamed K.I, Bolin J.F, Musselman L.J, Peterson A.T. 2007. Genetic diversity of Strigaand implications for control and modeling future distributions. In: IntegratingNew Technologies for Striga Control: Towards Ending the Witch-Hunt (eds Ejeta G, Gressel J), pp. 71–84. World Scientific.
Musselman L.J. (ed.) 1987. Taxonomy of witchweeds. Parasitic Weeds in Agriculture. 1: 317.
Parker C. 2012. Parasitic weeds: A world challenge. Weed Sci. 60: 269-276.
Pennisi E. 2015. How crop-killing witch weed senses its victims. Sci. 350: 146-147.
Pescott O.L. 2013. The genetics of host adaptation in the parasiticplant Striga hermonthica. Ph. D thesis, University of Sheffield, United Kingdom. Pp 240.
Ramaiah K.V, Parker C. 1982. Sorghum in the Eighties, pp.291-302. In: L. R. House, L. K.  Mughogho and J. M. Peacock (eds.). Proceedings of the International Symposium on Sorghum. ICRISAT.
Rodenburg J, Bastiaans L. 2011. Host-plant defense against Striga spp.: reconsidering the role of tolerance. Weed Res. 51: 438-441.
Ronald M, Charles M, Stanford M, Eddie M. 2017. Predictions of the Striga Scourge under New Climate in Southern Africa: A Perspective. J Biol Sci. 17(5): 194-201.
Runo S, Kuria E.K. 2018. Habits of a highly successful cereal killer, Striga. PLoS Pathog. 14(1). e1006731.
Showemimo F.A. 2006. Effect of Striga hermonthica on yield and yield components of sorghum in Northern Guinea Savanna of NigeriaJ Plant Sci. 1: 67-71.
Yoder J.I, Scholes J.D. 2010. Host plant resistance to parasitic weeds; recent progress and bottlenecks. Current Opinion Plant Biol. 13: 478-484.
Yoshida S, Shirasu K. 2009. Multiple layers of incompatibility to parasitic witch weed, Striga hermonthica. New Phytol. 183: 180–189.