ISC, Google Scholar, CAB Abstracts

Document Type : Original Article


Fazenda Lagoa Bonita, BR 020 KM 12, DF 335 KM 4,8 - Planaltina, Brasília – DF, Brazil



Morning glory (Ipomoea purpurea L.) is a significant weed in summer crops in Brazil. Castor bean (Ricinus comunnis L.) is an oleaginous plant of high economic and social importance, and its oil has numerous purposes, including pest and disease control. The objective of this work was to evaluate the effect of castor oil at different concentrations (100, 90, 80, 60, 40, 20, 10 and 5%) on the germination of morning glory seeds. The experiment was carried out in a gerbox containing three sheets of germitest paper, in a completely randomized design, corresponding to the seven treatments mentioned (oil dilutions) and the control (only water), with four replications, containing 50 seeds each. Data were obtained by daily reading, where the germinated seeds of each repetition were noted and used to calculate the index and germination time. Based on the experiment, it can be seen that castor oil at a concentration of 100% led to a greater delay in the germination of morning glory seeds, although it did not differ significantly from the concentrations of 80, 60 and 10. The treatment with oil at 5% and 20% advanced germination, although with no significant difference between the control and the 40% dilution. Regarding germination, the 40% dilution significantly reduced the germination index by 1%. It is concluded that castor oil influences (delays) the germination of morning glory seeds, emphasizing on the 100% treatment, which should be studied regarding its effect on germination and seedling development of this weed.


  1. Andrade M.J.S, Marques E. 2021. Neem oil influences morning glory seed germination. J. Res. Weed Sci. (in press).
  2. Beltrão N.E.M, Silva L.C, Vasconcelos O.L, Azevedo D.M.P, Vieira D.J. 2001. Fitologia.In: Azevedo DMP, Lima EF. O Agronegócio da mamona no Brasil. Embrapa Algodão, Campina Grande, PB. –Brasília: Embrapa Informação Tecnológica, pp. 37-61.
  3. Benvenuti S. 2007. Weed seed movement and dispersal strategies in the agricultural environment. Weed Biol. Manag. 7: 141-157.
  4. Cardoso M.R.D, Marcuzzo F.F.N, Barros J.R. 2014. Classificação climática de Köppen- Geiger para o Estado de Goiás e o Distrito
    Acta Geogr. 8(16): 40-55.
  5. Castro L.A, Beltrão D.O, Santos P.G.A, Carvalho Y.B, Nogueira Filho N.R, Costa J.P.L, Marques E. 2021. Allelopathic effect of crude plant extract on Ipomoea purpurea L. J. Res. Weed Sci. 4(2): 188-199.
  6. Cuchiara C.C, Borgens C.S, Sopezki M.S, Souza S.A.M, Bobrowski V.L. 2007. Efeito antiproliferativo dos extratos aquosos de mamona (Ricinus communis L.). Ver. Bras. Biocienc. 5(2): 639-641.
  7. De Oliveira D, Di Luccio M, Faccio C, Rosa C.D, Bender J.P, Lipke N, Amroginski C, Dariva C, Oliveira J.V. 2005. Optimization of alkaline transesterification of soybean oil and castor oil for biodiesel roduction. Appl. Biochem. Biotechnol. 121: 553-560.
  8. Ferreira C.M, Rosa O.P.S, Torres S.A Ferreira F.B.A, Bernardinelli N. 2002. Activity of endodontic antibacterial agents against selected anaerobic bacteria. Braz. Dent. J. 13:118-122.
  9. Ferreira D.F. 2014. Sisvar: A Guide for its Bootstrap procedures in multiple comparisons. Ciênc. Agrotec. 38(2): 109-112.
  10. Gaillard Y, Pepin G. 1999. Poisoning by plant material: review of human cases and analytical determination of main toxins by high-performance liquid chromatography-(tandem) mass spectrometry. J. B 733: 181-229.
  11. Gent D.H, Schwartz H.F, Nissen S.J. 2003. Effect of commercial adjuvants on vegetable crop fungicide coverage, absorption, and efficacy. Plant Dis. 87:591-597.
  12. Inckot R.C, Santos G.D.O, Souza L.A, Bona C. 2011. Germination and development of Mimosa pilulifera in petroleum- contaminated soil and bioremediated soil. Flora 206: 261-266.
  13. Machado C.C, Garcia A.R, Silva E, Souza A.P. 1998. Análise técnico-econômica do uso dos óleos de mamona (Ricinus communis ) e mineral como lubrificantes do conjunto de corte de motosserras. Rev. Arvore. 22(1): 123-134.
  14. Mithila J, Godar A.S. 2013. Understanding Genetics of Herbicide Resistance in Weeds: Implications for Weed Management. Adv. Crop. Sci. Technol. 1: 115.
  15. Morris J.B, Wang M.L, Morse A.S. 2011. Ricinus. In: Kole C (Ed), Wild Crop Relatives: Genomic and Breeding Resources – ilseeds. Berlin, Heidelberg:Springer Berlin Heidelberg, Germany, pp. 251-260.
  16. Pazuch D, Trezzi M.M, Guimarães A.C.D, Barancelli M.V.J, Pasini R, Vidal R.A. 2017. Evolution of natural resistance to glyphosate in morning glory populations. Planta Daninha 35: e017159430.
  17. Rahmati H, Salehi S, Malekpour A, Farhangi F. 2015. Antimicrobial activity of castor oil plant (Ricinus communis) seeds extract against gram positive bacteria, gram negative bacteria and yeast. Int. J. Mol. Med. 11: 9-12.
  18. Rigon C.A.G, Salomonni A.T, Cutti L, Aguiar A.C.M. 2013. Allelopathic potential of castor bean extracts on germination and
    growth of ryegrass. Tecnol. Ciên. Agropec. 7(2): 1-7.
  19. Rondelli V.M, Pratissoli D, Santos Junior G, Zago H.J, Machado L.C, Rodrigues H.S, Valbon W.R. 2013. Insecticide activity of Beauveria bassiana and castor bean oil against Plutella xylostella under greenhouse. Biosci. J. 29(5): 1187-1193.
  20. Santana D.G, Ranal M.A. 2004. Análise da germinação, um enfoque estatístico. Brasília: Universidade de Brasília. 248p.
  21. Schneider R.C.S, Alves D.M, Lara L.R.S, Pons E.L, Caramão E.B, Martinelli M. 2007. Componentes minoritários do óleo de mamona (Ricinus comunnis L.). Tecno-lóg. 11(1-2): 41-46.
  22. Soltani N, Dille A.J, Burke, I.C, Everman W.J, VanGessel M.J, Davis V.M, Sikkema P.H. 2017. Perspectives on potential soybean
    yield losses from weeds in North America.285 Weed Technol. 31(1): 148-154.
  23. Takano E.H, Russo C, Gonçalves E.A.L, Chierice G.O, Catanzaro-Guimarães A.S, Castro-Prado M.A.A. 2007. Inibição do desenvolvimento de fungos fitopatogênicos por detergente derivado de óleo da mamona (Ricinus communis). Ciênc. Rural 37(5): 1235-1240.