Document Type : Original Article

Authors

1 Agronomy Department, State University of Maringá, Maringá, PR, Brazil

2 Plant and Soil Sciences Department, Mississippi State University, Mississippi State, MS, United States of America

Abstract

Pyroxasulfone is a new herbicidal molecule with residual activity to be used in Brazilian agricultural areas, it is necessary to gather information about its behavior in the soil, as well as its persistence in the environment and the risk of environmental contamination. The objective of this work was to evaluate the sensitivity of species to pyroxasulfone in order to select potential plants to be used as bioindicators in herbicide soil activity experiments. Greenhouse experiments were conducted with four species as potential bioindicators including lettuce (Lactuca sativa), cucumber (Cucumis sativus), sorghum (Sorghum bicolor), and tomato (Solanum lycopersicum). The preemergence pyroxasulfone treatments at 0, 3.125, 6.25, 12.5, 25, 50, and 100 g a.i. ha-1. The percentage of injury of the treated species was evaluated by a visual scale of 0-100% at 7 and 14 days after treatment (DAT). We also evaluated the effect of the herbicide on plant height, root length, shoot fresh biomass, root fresh biomass, and total fresh biomass. Using the non-linear regression models, was possible to estimate the dose of pyroxasulfone required to obtain 50% of the response for the analyzed variable (I50). I50 values ​​were used to determine the susceptibility of the species evaluated. The pyroxasulfone dose-response experiments revealed three species with potential for bioassay studies. Overall, Lettuce was the most sensitive to herbicide. Sorghum may be useful species to detect pyroxasulfone soil activity based on plant height measurements (I50 = 9.7 g a.i. ha-1). Cucumber also showed to be a potential candidate as bioindicators. Tomato was considered tolerant of pyroxasulfone doses evaluated.

Keywords

Bezerra Neto F, Rocha R.C.C, Negreiros M.Z, Rocha R.H, Queiroga R.C.F. 2005. Produtividade de alface em função de condições de sombreamento e temperatura e luminosidade elevadas. Hortic Bras. 23(2): 189-192.

Brzezinski C.R, Abati J, Geller A, Werner F, Zucareli C. 2017. Produção de cultivares de alface americana sob dois sistemas de cultivo. Rev Ceres. 64: 83-89.

Constantin J, Oliveira Jr R.S, Cavalieri SD, Arantes J.G.Z, Alonso D.G, Roso A.C. 2007. Estimate of the period prior to weed interference in soybean (Glycine max), variety Coodetec 202, through two-fold checks. Planta Daninha. 25(2): 231-237.

Gomes T.M, Modolo V.A, Botrel T.A, Oliveira R.F. 2005. Aplicação de doses de CO2 via água de irrigação na cultura da alface. Hortic Bras. 23: 316-319.

Guerra N, Oliveira Jr R.S, Constantin J, Oliveira Neto A.M, Dan H.A, Alonso D.G, Campos Jumes T.M. 2011. Seleção de espécies bioindicadoras para os herbicidas trifloxysulfuron-sodium e pyrithiobac-sodium. Rev Bras Herb. 10: 37-48.

Inoue M.H, Marchiori Jr O, Oliveira Jr R.S, Constantin J, Tormena CA. 2002. Calagem e o potencial de lixiviação de imazaquin em colunas de solo. Planta Daninha. 20: 125-132.

Khalil Y, Flower K, Siddique K.H.M, Ward P. 2018a. Effect of crop residues on interception and activity of prosulfocarb, pyroxasulfone, and trifluralin. PLoS ONE, 13(12): 1-19.

Khalil Y, Siddique K.H.M, Ward P, Piggin C, Bong H.S. 2018b. A bioassay for prosulfocarb, pyroxasulfone and trifluralin detection and quantification in soil and crop residues. Crop Past Sci. 69(6): 606-616.

Kotoula‐Syka E.L.E.N.I, Eleftherohorinos I.G, Gagianas A.A, Sficas A.G. 1993. Phytotoxicity and persistence of chlorsulfuron, metsulfuronmethyl, triasulfuron and tribenuron-methyl in three soils. Weed Res. 33(5): 355-367.

Lima R.O, Oliveira M.F, Silva A.A, Magalhães J.V. 1999. Comportamento do herbicida flumioxazin em solo com diferentes doses de calcário. Revista Ceres. 46(268):607-613.

Mehdizadeh M, Alebrahim M.T, Roushani M, Streibig J.C. 2016. Evaluation of four different crops’ sensitivity to sulfosulfuron and tribenuron methyl soil residues. Acta Agric Scand B Soil Plant Sci. 66: 706-713.

Monquero P.A, Binha D.P, Silva A.C, Silva P.V, Amaral L.R. 2008. Efficiency of pre-emergence herbicides after different periods of drought. Planta Daninha. 26: 185-193.

Nakatani M, Yamaji Y, Honda H, Uchida Y. 2016. Development of the novel pre-emergence herbicide pyroxasulfone. J Pest Sci. 41(3): 107-112.

Nunes A.L, Lorenset J, Gubiani J.E, Santos F.M. 2018. A multy-year study reveals the importance of residual herbicides on weed control in glyphosate-resistant soybean. Planta Daninha. 36:1-10.

Nurse R.E, Sikkema P.H, Robinson D.E. 2011. Weed control and sweet maize (Zea mays L.) yield as affected by pyroxasulfone dose. Crop Protec. 30(7): 789-793.

Raimondi M.A, Oliveira Jr R.S, Constantin J, Biffe D.F, Arantes J.G.Z, Franchini L.H, Rios F.A, Blainski E, Osipe J.B. 2010. Residual activity of herbicides applied to the soil in relation to control of four Amaranthus species. Planta Daninha. 28: 1073-1085.

Ritz C, Baty F, Streibig J.C, Gerhard D. 2015. Dose-response analysis using R. PLoS ONE. 10(12): e0146021.

SBCPD- Sociedade Brasileira da Ciência Das Plantas Daninhas. 1995. Procedimentos para instalação, avaliação e análise de experimentos com herbicidas. First ed. Londrina, Paraná.

Streibig J.C, Rudemo M, Jensen J.E. 1993. Dose-response curves and statistical models. In: Streibig JC, Kudsk P. Herbicide Bioassays. Boca Raton: CRC Press. pp.29-55.

Szmigielski A.M, Johnson E.N, Schoenau J.J. 2014. A bioassay evaluation of pyroxasulfone behavior in prairie soils. J Pest Sci. 39(1-2): 22-28.

Tanetani Y. 2012. Action mechanism of isoxazoline-type herbicides. J Pest Sci. pp.J12-05.

Tanetani Y, Fujioka T, Kaku K, Shimizu T. 2011. Studies on the inhibition of plant very-long-chain fatty acid elongase by a novel herbicide, pyroxasulfone. J Pest Sci. 36(2): 221-228.

Tanetani Y, Kaku K, Kawai K, Fujioka T, Shimizu T. 2009. Action mechanism of a novel herbicide, pyroxasulfone. Pest Biochem Phys. 95: 47-55.

Westra E.P, Shaner D.L, Barbarick K.A, Khosla R. 2015. Evaluation of sorption coefficients for pyroxasulfone, S-metolachlor, and dimethenamid-p. A S W Res. 8: 9-15.

Yamaji Y, Honda H, Kobayashi M, Hanai R, Inoue J. 2014. Weed control efficacy of a novel herbicide, pyroxasulfone. J Pest Sci. 39(3): 165-169.